hugging face---transformers包

news/2025/2/24 11:18:30

一、前言

不同于计算机视觉的百花齐放,不同网络适用不同情况,NLP则由Transformer一统天下。transformer是2017年提出的一种基于自注意力机制的神经网络架构,transformers库是hugging face社区创造的一个py库,通过该库可以实现统一的接口去下载调用社区中的模型,并进行微调等等操作。 (没梯子也可以手动下载)

二、流程

①分词

1、含义

神经网络只能处理数字,因此必须将文本转换为数值(如词表索引)。先利用分词器,将连续的文本拆分为离散的单元(Token),现在一般直接调用transformers库的分词器完成分词即可。

在自然语言处理(NLP)中,Token(标记/词元) 是文本处理的最小单位,可以理解为将一段文本“拆解”后的基本元素。它的具体含义取决于分词策略(Tokenization),以下是详细解释:


1. Token 的常见形式

  • 单词:例如英文中按空格切分("hello""world")。
  • 子词(Subword):将长词或罕见词拆分为更小的片段(如 "unhappiness" → "un" + "##happiness")。
  • 字符:单个字母或汉字(如 "A""语")。
  • 标点/符号:例如 ",""?"
  • 特殊标记:模型预定义的符号(如 [CLS][SEP]<pad>)。

2. 为什么需要 Tokenization?

  • 统一输入格式:将文本转换为模型可处理的数值(如 input_ids)。
  • 解决未登录词(OOV):通过子词拆分处理词典外的词汇(例如 "ChatGPT" → "Chat" + "G" + "PT")。
  • 跨语言兼容:适用于无空格语言(如中文、日文)或黏着语(如土耳其语)。

3. 不同分词策略的 Token 示例

(1) 英文文本

  • 原始句子"Don't hesitate to try!"
  • 分词结果(不同策略):
    • Word-based(按单词):["Don't", "hesitate", "to", "try", "!"]
    • Subword(BERT 风格)["Don", "'", "t", "hesitate", "to", "try", "!"]
    • Character-based(按字符):["D", "o", "n", "'", "t", "h", "e", ...]

(2) 中文文本

  • 原始句子"深度学习很有趣!"
  • 分词结果(不同策略):
    • 按词语["深度", "学习", "很", "有趣", "!"]
    • 按子词(SentencePiece)["深", "度", "学", "习", "很", "有", "趣", "!"]
    • 按字符["深", "度", "学", "习", "很", "有", "趣", "!"]

4. Token 在模型中的使用

  • 数值化映射:每个 Token 会被转换为词典中的索引(ID)。
    例如:"hello" → 1234"!" → 99
  • 输入格式:文本最终转换为模型所需的 input_ids,例如:
    "Hello world!" → [101, 1234, 2137, 999, 102](BERT 风格)。

5. 不同模型的分词器对比

模型/分词器分词策略Token 示例
BERTWordPiece["hello", "##world", "!"]
GPT-3Byte-Pair (BPE)["hello", " world", "!"]
T5SentencePiece["▁Hello", "▁world", "!"]
中文BERT按字切分["深", "度", "学", "习"]

6. 关键点总结

  • Token 是文本的原子单位:拆解文本的方式取决于任务需求和语言特性。
  • 子词分词是主流:平衡词典大小与未登录词问题(如 "ChatGPT" 拆为 ["Chat", "G", "PT"])。
  • Token 与模型强相关:BERT、GPT 等模型的分词器需配套使用。

如果你正在使用 Transformers 库,可以这样体验分词过程:

from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
text = "Don't hesitate to try!"
tokens = tokenizer.tokenize(text)  # 输出:["don", "'", "t", "hesitate", "to", "try", "!"]
input_ids = tokenizer.encode(text) # 输出:数值化的 Token ID 列

分词后的Token往往会将每个Token映射到唯一一个ID,因为计算机只能处理数值,无法直接理解字符、词语或句子,可以理解为有一个超级大的字典,足以容纳所有字符,每个Token都可以对应唯一ID,训练模型是通过Token的ID进行的。(在对一个句子分词和映射时,可能会加入一些分词符,所以打印映射结果可能会比分词后的字符数多)

2、分词器(Tokenizer)

(1)AutoTokenizer

前面说过,不同的模型可能会使用不同的分词策略,所以如果使用不同的模型,就需要加载不同的分词器以使用不同的分词策略,transformers提供了AutoTokenizer,可以自动实现判断其分词策略,只需要提供给它对应的模型名即可。

from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")# 将模型名传入即可自动判断分词策略
text = "Don't hesitate to try!"
tokens = tokenizer.tokenize(text)  # 分词结果:["don", "'", "t", "hesitate", "to", "try", "!"]
input_ids = tokenizer.encode(text) # 数值化的 Token ID 列表

(2)分词器相关参数

  • tokenizer.tokenize():轻量级工具,仅用于分词调试。
  • tokenizer():一站式解决方案,生成模型所需的完整输入。
    根据需求选择合适的方法:若直接调用模型,永远优先使用 tokenizer();若需中间结果(如分析分词策略),再用 tokenizer.tokenize()
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")# 将模型名传入即可自动判断分词策略
raw_inputs = ["Don't hesitate to try!",
              "I love eat rice!"]
tokens = tokenizer(raw_inputs, padding=True, truncation=True, return_tensors='pt')
input_ids = tokenizer.encode(raw_inputs)
print(tokens)
print(input_ids)

# out

{'input_ids': tensor([[  101,  2123,  1005,  1056, 16390,  2000,  3046,   999,   102],
        [  101,  1045,  2293,  4521,  5785,   999,   102,     0,     0]]), 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 0, 0]])}
[101, 2123, 1005, 1056, 16390, 2000, 3046, 999, 102, 1045, 2293, 4521, 5785, 999, 102] 

  • padding:填充,以拥有最长Token的那句话为基准,为其他不够长的进行填充,以使处理后的TokenID列表长度一致。
  • truncation:截断,将输入文本控制在模型能接受的最大长度内,如Transformer 的注意力机制:计算复杂度随输入长度呈平方级增长(O(n²)),模型预训练时固定了最大长度(如 BERT 为 512 Tokens)
  • attention_mask:用于告诉模型在处理输入时应该“关注”哪些位置,忽略哪些位置。它的核心作用是解决文本长度不一致和填充(Padding)带来的问题,因为在padding时会对较短Token的句子做填充,填充部分是无效输入,如果没有 attention_mask,模型会误认为填充的 0 是有效输入,导致计算错误。
  • return_tensors(返回张量格式):指定返回数据的框架格式。常用值

    • "pt":返回 PyTorch 张量。
    • "tf":返回 TensorFlow 张量。
    • "np":返回 NumPy 数组。
    • None:返回列表(默认)。

3、模型的缓存与加载

from transformers import AutoModel, AutoTokenizer

# 下载模型和分词器到 cache_dir/bert
model = AutoModel.from_pretrained("bert-base-uncased", cache_dir="./bert")
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

 AutoModel用于找到并缓存或加载对应模型,cache_dir可指定缓存路径,默认会放在C盘的.cache/huggingface目录下。


http://www.niftyadmin.cn/n/5864256.html

相关文章

设计模式Python版 中介者模式

文章目录 前言一、中介者模式二、中介者模式示例 前言 GOF设计模式分三大类&#xff1a; 创建型模式&#xff1a;关注对象的创建过程&#xff0c;包括单例模式、简单工厂模式、工厂方法模式、抽象工厂模式、原型模式和建造者模式。结构型模式&#xff1a;关注类和对象之间的组…

单入单出队列性能优化(Lock-Free)

摘要&#xff1a;文中首先介绍了有锁线程安全循环队列的基本实现&#xff0c;然后探讨了使用原子变量实现 Lock-Free 队列的优势&#xff0c;能够减少线程之间的数据竞争。接着&#xff0c;介绍了数据对齐的策略&#xff0c;以降低伪共享的概率&#xff0c;随后引入了索引缓存来…

C++初阶——简单实现list

目录 1、前言 2、List.h 3、Test.cpp 1、前言 1. 简单实现std::list&#xff0c;重点&#xff1a;迭代器&#xff0c;模板类&#xff0c;运算符重载。 2. 并不是&#xff0c;所有的类&#xff0c;都需要深拷贝&#xff0c;像迭代器类模板&#xff0c;只是用别的类的资源&am…

leetcode day20 滑动窗口209+904

209 长度最小的子数组 给定一个含有 n 个正整数的数组和一个正整数 target 。 找出该数组中满足其总和大于等于 target 的长度最小的 子数组 [numsl, numsl1, ..., numsr-1, numsr] &#xff0c;并返回其长度。如果不存在符合条件的子数组&#xff0c;返回 0 。 示例 1&#…

【Python量化金融实战】-第1章:Python量化金融概述:1.4 开发环境搭建:Jupyter Notebook、VS Code、PyCharm

在量化金融开发中&#xff0c;选择合适的开发环境至关重要。本章介绍三种主流工具&#xff1a;Jupyter Notebook&#xff08;交互式分析&#xff09;、VS Code&#xff08;轻量级编辑器&#xff09;、PyCharm&#xff08;专业IDE&#xff09;&#xff0c;并通过实战案例展示其应…

UniApp SelectorQuery 讲解

一、SelectorQuery简介 在UniApp中&#xff0c;SelectorQuery是一个非常强大的工具&#xff0c;它允许开发者查询节点信息。通过这个API&#xff0c;我们可以获取到页面元素的尺寸、位置、滚动条位置等信息。这在处理动态布局、动画效果或是用户交互时尤为重要。 二、基本使用…

【Git 学习笔记_27】DIY 实战篇:利用 DeepSeek 实现 GitHub 的 GPG 密钥创建与配置

文章目录 1 前言2 准备工作3 具体配置过程3.1. 本地生成 GPG 密钥3.2. 导出 GPG 密钥3.3. 将密钥配置到 Git 中3.4. 测试提交 4 问题排查记录5 小结与复盘 1 前言 昨天在更新我的第二个 Vim 专栏《Mastering Vim (2nd Ed.)》时遇到一个经典的 Git 操作问题&#xff1a;如何在 …

亚马逊云科技MySQL托管服务:Amazon RDS for MySQL的技术优势与成本优化实践

引言&#xff1a; 在数字化转型的浪潮中&#xff0c;数据库作为企业核心业务的“中枢神经”&#xff0c;其稳定性、性能及成本直接影响企业的运营效率和竞争力。然而&#xff0c;自建MySQL数据库的复杂性、运维成本高企、扩展性不足等问题&#xff0c;始终是开发者与…