sizeof strlen memset的基本用法

news/2024/6/29 12:06:27 标签: struct, 编译器, alignment, buffer, 存储, c
cle class="baidu_pl">
cle_content" class="article_content clearfix">
content_views" class="htmledit_views">

sizeof


前向声明:
sizeof࿰c;一个其貌不扬的家伙࿰c;引无数菜鸟竟折腰࿰c;小虾我当初也没少犯迷糊࿰c;秉着“辛苦我一个࿰c;幸福千万人”的伟大思想࿰c;我决定将其尽可能详细的总结一下。
但当我总结的时候才发现࿰c;这个问题既可以简单࿰c;又可以复杂࿰c;所以本文有的地方并不适合初学者࿰c;甚至都没有必要大作文章。但如果你想“知其然࿰c;更知其所以然”的话࿰c;那么这篇文章对你或许有所帮助。
菜鸟我对C++的掌握尚未深入࿰c;其中不乏错误࿰c;欢迎各位指正啊

1. 定义:
sizeof是何方神圣sizeof乃C/C++中的一个操作符(operator)是也࿰c;简单的说其作用就是返回一个对象或者类型所占的内存字节数。

MSDN上的解释为:
The sizeof keyword gives the amount of storage, in bytes, associated with a variable or a type (including aggregate types). This keyword returns a value of type size_t.
其返回值类型为size_t࿰c;在头文件stddef.h中定义。这是一个依赖于编译系统的值࿰c;一般定义为
typedef unsigned int size_t;
世上class="tags" href="/tags/BianYiQi.html" title=编译器>编译器林林总总࿰c;但作为一个规范࿰c;它们都会保证char、signed char和unsigned
char的sizeof值为1࿰c;毕竟char是我们编程能用的最小数据类型。

2. 语法:
sizeof有三种语法形式࿰c;如下:
1) sizeof( object ); // sizeof( 对象 );
2) sizeof( type_name ); // sizeof( 类型 );
3) sizeof object; // sizeof 对象;
所以࿰c;
int i;
sizeof( i ); // ok
sizeof i; // ok
sizeof( int ); // ok
sizeof int; // error
既然写法3可以用写法1代替࿰c;为求形式统一以及减少我们大脑的负担࿰c;第3种写法࿰c;忘掉它吧!实际上࿰c;sizeof计算对象的大小也是转换成对对象类型的计算࿰c;也就是说࿰c;同种类型的不同对象其sizeof值都是一致的。这里࿰c;对象可以进一步延伸至表达式࿰c;即sizeof可以对一个表达式求值࿰c;class="tags" href="/tags/BianYiQi.html" title=编译器>编译器根据表达式的最终结果类型来确定大小࿰c;一般不会对表达式进行计算。如:
sizeof( 2 ); // 2的类型为int࿰c;所以等价于 sizeof( int );
sizeof( 2 + 3.14 ); // 3.14的类型为double࿰c;2也会被提升成double类型࿰c;所以等价于 sizeof( double );

sizeof也可以对一个函数调用求值࿰c;其结果是函数返回类型的大小࿰c;函数并不会被调用࿰c;我们来看一个完整的例子:
char foo()
{
printf("foo() has been called./n");
return ''a'';
}
int main()
{
size_t sz = sizeof( foo() ); // foo() 的返回值类型为char࿰c;所以sz = sizeof(char )࿰c;foo()并不会被调用
printf("sizeof( foo() ) = %d/n", sz);
}

C99标准规定࿰c;函数、不能确定类型的表达式以及位域(bit-field)成员不能被计算sizeof值࿰c;即下面这些写法都是错误的:
sizeof( foo );// error
void foo2() { }
sizeof( foo2() );// error
class="tags" href="/tags/STRUCT.html" title=struct>struct S
{
unsigned int f1 : 1;
unsigned int f2 : 5;
unsigned int f3 : 12;
};
sizeof( S.f1 );// error

3. sizeof的常量性
sizeof的计算发生在编译时刻࿰c;所以它可以被当作常量表达式使用࿰c;如:
char ary[ sizeof( int ) * 10 ]; // ok
最新的C99标准规定sizeof也可以在运行时刻进行计算࿰c;如下面的程序在Dev-C++中可以正确执行:
int n;
n = 10; // n动态赋值
char ary[n]; // C99也支持数组的动态定义
printf("%d/n", sizeof(ary)); // ok. 输出10
但在没有完全实现C99标准的class="tags" href="/tags/BianYiQi.html" title=编译器>编译器中就行不通了࿰c;上面的代码在VC6中就通不过编译。所以我们最好还是认为sizeof是在编译期执行的࿰c;这样不会带来错误࿰c;让程序的可移植性强些。

4. 基本数据类型的sizeof
这里的基本数据类型指short、int、long、float、double这样的简单内置数据类型࿰c;由于它们都是和系统相关的࿰c;所以在不同的系统下取值可能不同࿰c;这务必引起我们的注意࿰c;尽量不要在这方面给自己程序的移植造成麻烦。

 

5. 指针变量的sizeof
学过数据结构的你应该知道指针是一个很重要的概念࿰c;它记录了另一个对象的地址。既然是来存放地址的࿰c;那么它当然等于计算机内部地址总线的宽度。所以在32位计算机中࿰c;一个指针变量的返回值必定是4(注意结果是以字节为单位)࿰c;可以预计࿰c;在将来的64位系统中指针变量的sizeof结果为8

char* pc = "abc";
int* pi;
string* ps;
char** ppc = &pc;
void (*pf)();//
函数指针
sizeof( pc ); //
结果为4
sizeof( pi ); //
结果为4
sizeof( ps ); //
结果为4
sizeof( ppc ); //
结果为4
sizeof( pf );//
结果为4
指针变量的sizeof值与指针所指的对象没有任何关系࿰c;正是由于所有的指针变量所占内存大小相等࿰c;所以MFC消息处理函数使用两个参数WPARAMLPARAM就能传递各种复杂的消息结构(使用指向结构体的指针)。

6.
数组的sizeof
数组的sizeof值等于数组所占用的内存字节数࿰c;如:
char a1[] = "abc";
int a2[3];
sizeof( a1 ); //
结果为4c;字符末尾还存在一个NULL终止符
sizeof( a2 ); //
结果为3*4=12(依赖于int

一些朋友刚开始时把sizeof当作了求数组元素的个数࿰c;现在࿰c;你应该知道这是不对的࿰c;那么应该怎么求数组元素的个数呢Easyc;通常有下面两种写法:
int c1 = sizeof( a1 ) / sizeof( char ); //
总长度/单个元素的长度
int c2 = sizeof( a1 ) / sizeof( a1[0] ); //
总长度/第一个元素的长度

写到这里࿰c;提一问࿰c;下面的c3c;c4值应该是多少呢
void foo3(char a3[3])
{
int c3 = sizeof( a3 ); // c3 ==
}
void foo4(char a4[])
{
int c4 = sizeof( a4 ); // c4 ==
}
也许当你试图回答c4的值时已经意识到c3答错了࿰c;是的࿰c;c3!=3。这里函数参数a3已不再是数组类型࿰c;而是蜕变成指针࿰c;相当于char* a3c;为什么仔细想想就不难明白࿰c;我们调用函数foo1时࿰c;程序会在栈上分配一个大小为3的数组吗不会!数组是传址的࿰c;调用者只需将实参的地址传递过去࿰c;所以a3自然为指针类型(char*)࿰c;c3的值也就为4

7.
结构体的sizeof
这是初学者问得最多的一个问题࿰c;所以这里有必要多费点笔墨。让我们先看一个结构体:
class="tags" href="/tags/STRUCT.html" title=struct>struct S1
{
char c;
int i;
};
sizeof(s1)等于多少聪明的你开始思考了࿰c;char1个字节࿰c;int4个字节࿰c;那么加起来就应该是5。是这样吗你在你机器上试过了吗也许你是对的࿰c;但很可能你是错的!VC6中按默认设置得到的结果为8

Why
为什么受伤的总是我
请不要沮丧࿰c;我们来好好琢磨一下sizeof的定义——sizeof的结果等于对象或者类型所占的内存字节数࿰c;好吧࿰c;那就让我们来看看S1的内存分配情况:
S1 s1 = { ''a'', 0xFFFFFFFF };
定义上面的变量后࿰c;加上断点࿰c;运行程序࿰c;观察s1所在的内存࿰c;你发现了什么
以我的VC6.0为例࿰c;s1的地址为0x0012FF78c;其数据内容如下:
0012FF78: 61 CC CC CC FF FF FF FF

发现了什么怎么中间夹杂了3个字节的CC看看MSDN上的说明:
When applied to a class="tags" href="/tags/STRUCT.html" title=struct>structure type or variable, sizeof returns the actual size, which may include padding bytes inserted for class="tags" href="/tags/ALIGNMENT.html" title=alignment>alignment.
原来如此࿰c;这就是传说中的字节对齐啊!一个重要的话题出现了。
为什么需要字节对齐计算机组成原理教导我们这样有助于加快计算机的取数速度࿰c;否则就得多花指令周期了。为此࿰c;class="tags" href="/tags/BianYiQi.html" title=编译器>编译器默认会对结构体进行处理(实际上其它地方的数据变量也是如此)࿰c;让宽度为2的基本数据类型(short等)都位于能被2整除的地址上࿰c;让宽度为4的基本数据类型(int等)都位于能被4整除的地址上࿰c;以此类推。这样࿰c;两个数中间就可能需要加入填充字节࿰c;所以整个结构体的sizeof值就增长了。
让我们交换一下S1charint的位置:
class="tags" href="/tags/STRUCT.html" title=struct>struct S2
{
int i;
char c;
};
看看sizeof(S2)的结果为多少࿰c;怎么还是8再看看内存࿰c;原来成员c后面仍然有3个填充字节࿰c;这又是为什么啊别着急࿰c;下面总结规律。

字节对齐的细节和class="tags" href="/tags/BianYiQi.html" title=编译器>编译器实现相关࿰c;但一般而言࿰c;满足三个准则:
1)
结构体变量的首地址能够被其最宽基本类型成员的大小所整除;
2)
结构体每个成员相对于结构体首地址的偏移量(offset)都是成员大小的整数倍࿰c;如有需要class="tags" href="/tags/BianYiQi.html" title=编译器>编译器会在成员之间加上填充字节(internal adding);
3)
结构体的总大小为结构体最宽基本类型成员大小的整数倍࿰c;如有需要class="tags" href="/tags/BianYiQi.html" title=编译器>编译器会在最末一个成员之后加上填充字节(trailing padding)。

对于上面的准则࿰c;有几点需要说明:
1)
前面不是说结构体成员的地址是其大小的整数倍࿰c;怎么又说到偏移量了呢因为有了第1点存在࿰c;所以我们就可以只考虑成员的偏移量࿰c;这样思考起来简单。想想为什么。

结构体某个成员相对于结构体首地址的偏移量可以通过宏offsetof()来获得࿰c;这个宏也在stddef.h中定义࿰c;如下:
#define offsetof(s,m) (size_t)&(((s *)0)->m)
例如࿰c;想要获得S2c的偏移量࿰c;方法为
size_t pos = offsetof(S2, c);// pos
等于4

2)
基本类型是指前面提到的像charshortintfloatdouble这样的内置数据类型࿰c;这里所说的数据宽度就是指其sizeof的大小。由于结构体的成员可以是复合类型࿰c;比如另外一个结构体࿰c;所以在寻找最宽基本类型成员时࿰c;应当包括复合类型成员的子成员࿰c;而不是把复合成员看成是一个整体。但在确定复合类型成员的偏移位置时则是将复合类型作为整体看待。
这里叙述起来有点拗口࿰c;思考起来也有点挠头࿰c;还是让我们看看例子吧(具体数值仍以VC6为例࿰c;以后不再说明):
class="tags" href="/tags/STRUCT.html" title=struct>struct S3
{
char c1;
S1 s;
char c2;
};
S1
的最宽简单成员的类型为intc;S3在考虑最宽简单类型成员时是将S1“打散看的࿰c;所以S3的最宽简单类型为intc;这样࿰c;通过S3定义的变量࿰c;其class="tags" href="/tags/CunChu.html" title=存储>存储空间首地址需要被4整除࿰c;整个sizeof(S3)的值也应该被4整除。
c1
的偏移量为0c;s的偏移量呢这时s是一个整体࿰c;它作为结构体变量也满足前面三个准则࿰c;所以其大小为8c;偏移量为4c;c1s之间便需要3个填充字节࿰c;而c2s之间就不需要了࿰c;所以c2的偏移量为12c;算上c2的大小为13c;13是不能被4整除的࿰c;这样末尾还得补上3个填充字节。最后得到sizeof(S3)的值为16

通过上面的叙述࿰c;我们可以得到一个公式:
结构体的大小等于最后一个成员的偏移量加上其大小再加上末尾的填充字节数目࿰c;即:

sizeof( class="tags" href="/tags/STRUCT.html" title=struct>struct ) = offsetof( last item ) + sizeof( last item ) + sizeof( trailing padding )

到这里࿰c;朋友们应该对结构体的sizeof有了一个全新的认识࿰c;但不要高兴得太早࿰c;有一个影响sizeof的重要参量还未被提及࿰c;那便是class="tags" href="/tags/BianYiQi.html" title=编译器>编译器的pack指令。它是用来调整结构体对齐方式的࿰c;不同class="tags" href="/tags/BianYiQi.html" title=编译器>编译器名称和用法略有不同࿰c;VC6中通过#pragma pack实现࿰c;也可以直接修改/Zp编译开关。#pragma pack的基本用法为:#pragma pack( n )c;n为字节对齐数࿰c;其取值为124816c;默认是8c;如果这个值比结构体成员的sizeof值小࿰c;那么
该成员的偏移量应该以此值为准࿰c;即是说࿰c;结构体成员的偏移量应该取二者的最小值࿰c;
公式如下:
offsetof( item ) = min( n, sizeof( item ) )
再看示例:
#pragma pack(push) //
将当前pack设置压栈保存
#pragma pack(2) //
必须在结构体定义之前使用
class="tags" href="/tags/STRUCT.html" title=struct>struct S1
{
char c;
int i;
};
class="tags" href="/tags/STRUCT.html" title=struct>struct S3
{
char c1;
S1 s;
char c2;
};
#pragma pack(pop) //
恢复先前的pack设置
计算sizeof(S1)时࿰c;min(2, sizeof(i))的值为2c;所以i的偏移量为2c;加上sizeof(i)等于6c;能够被2整除࿰c;所以整个S1的大小为6
同样࿰c;对于sizeof(S3)c;s的偏移量为2c;c2的偏移量为8c;加上sizeof(c2)等于9c;不能被2整除࿰c;添加一个填充字节࿰c;所以sizeof(S3)等于10

现在࿰c;朋友们可以轻松的出一口气了࿰c;:)
还有一点要注意࿰c;空结构体(不含数据成员)的大小不为0c;而是1。试想一个不占空间的变量如何被取地址、两个不同的空结构体变量又如何得以区分呢于是࿰c;空结构体变量也得被class="tags" href="/tags/CunChu.html" title=存储>存储࿰c;这样class="tags" href="/tags/BianYiQi.html" title=编译器>编译器也就只能为其分配一个字节的空间用于占位了。如下:
class="tags" href="/tags/STRUCT.html" title=struct>struct S5 { };
sizeof( S5 ); //
结果为1

8.
含位域结构体的sizeof
前面已经说过࿰c;位域成员不能单独被取sizeof值࿰c;我们这里要讨论的是含有位域的结构体的sizeofc;只是考虑到其特殊性而将其专门列了出来。
C99
规定intunsigned intbool可以作为位域类型࿰c;但class="tags" href="/tags/BianYiQi.html" title=编译器>编译器几乎都对此作了扩展࿰c;允许其它类型类型的存在。使用位域的主要目的是压缩class="tags" href="/tags/CunChu.html" title=存储>存储࿰c;其大致规则为:
1)
如果相邻位域字段的类型相同࿰c;且其位宽之和小于类型的sizeof大小࿰c;则后面的字段将紧邻前一个字段class="tags" href="/tags/CunChu.html" title=存储>存储࿰c;直到不能容纳为止;
2)
如果相邻位域字段的类型相同࿰c;但其位宽之和大于类型的sizeof大小࿰c;则后面的字段将从新的class="tags" href="/tags/CunChu.html" title=存储>存储单元开始࿰c;其偏移量为其类型大小的整数倍;
3)
如果相邻的位域字段的类型不同࿰c;则各class="tags" href="/tags/BianYiQi.html" title=编译器>编译器的具体实现有差异࿰c;VC6采取不压缩方式࿰c;Dev-C++采取压缩方式;
4)
如果位域字段之间穿插着非位域字段࿰c;则不进行压缩;
5)
整个结构体的总大小为最宽基本类型成员大小的整数倍。

还是让我们来看看例子。
示例1
class="tags" href="/tags/STRUCT.html" title=struct>struct BF1
{
char f1 : 3;
char f2 : 4;
char f3 : 5;
};
其内存布局为:
|_f1__|__f2__|_|____f3___|____|
|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|
0 3 7 8 1316
位域类型为charc;第1个字节仅能容纳下f1f2c;所以f2被压缩到第1个字节中࿰c;而f3只
能从下一个字节开始。因此sizeof(BF1)的结果为2

示例2
class="tags" href="/tags/STRUCT.html" title=struct>struct BF2
{
char f1 : 3;
short f2 : 4;
char f3 : 5;
};
由于相邻位域类型不同࿰c;在VC6中其sizeof6c;在Dev-C++中为2

示例3
class="tags" href="/tags/STRUCT.html" title=struct>struct BF3
{
char f1 : 3;
char f2;
char f3 : 5;
};
非位域字段穿插在其中࿰c;不会产生压缩࿰c;在VC6Dev-C++中得到的大小均为3

9.
联合体的sizeof
结构体在内存组织上是顺序式的࿰c;联合体则是重叠式࿰c;各成员共享一段内存࿰c;所以整个联合体的sizeof也就是每个成员sizeof的最大值。结构体的成员也可以是复合类型࿰c;这里࿰c;复合类型成员是被作为整体考虑的。
所以࿰c;下面例子中࿰c;Usizeof值等于sizeof(s)
union U
{
int i;
char c;
S1 s;
};

 

 

---------------------补充----------------------------参数为结构或类。Sizeof应用在类和结构的处理情况是相同的。但有三点需要注意:

第一、结构或者类中的静态成员不对结构或者类的大小产生影响࿰c;因为静态变量的class="tags" href="/tags/CunChu.html" title=存储>存储位置与结构或者类的实例地址无关。

第二、没有成员变量的结构或类的大小为1࿰c;因为必须保证结构或类的每一个实例在内存中都有唯一的地址。

第三、类中含有虚函数的情况࿰c;虚函数表指针占用4个字节大小࿰c;并且放在类的开头。即虚函数在类中的位置对类的大小无影响࿰c;其始终是在最前面的。

下面举例说明࿰c;

1、Class Test{int a;static double c};//sizeof(Test)=4.

2、Test *s;//sizeof(s)=4,s为一个指针。

3、Class test1{ };//sizeof(test1)=1;

4、classcolor: #000000;">   A

color: #000000;">color: #000000;">color: #0000ff;">   double  a; 
color: #0000ff;">   color: #000000;">char
color: #000000;">  b; 
color: #0000ff;">   color: #000000;">virtualcolor: #000000;">   p(){};
};//sizeof(A)=24࿰c;因为类中有虚函数࿰c;所以等价于下面:

color: #000000;">color: #0000ff;">color: #000000;">classcolor: #000000;"> A
{

    [color
color: #000000;">=color: #000000;">#FF0000]color: #0000ff;">voidcolor: #000000;"> [color: #000000;">/color: #000000;">color]color: #000000;">*color: #000000;">p; color: #000000;">color: #008000;">//color: #008000;">虚函数表指针color: #008000;">
color: #000000;">    color: #0000ff;">color: #000000;">doublecolor: #000000;"> a;
    char
color: #000000;">  b;
};

sizeof与strlen的区别

第一个例子:
char* ss = "0123456789";
sizeof(ss) 结果 4 ===》ss是指向字符串常量的字符指针
sizeof(*ss) 结果 1 ===》*ss是第一个字符

char ss[] = "0123456789";
sizeof(ss) 结果 11 ===》ss是数组࿰c;计算到/0位置࿰c;因此是10+1
sizeof(*ss) 结果 1 ===》*ss是第一个字符

char ss[100] = "0123456789";
sizeof(ss) 结果是100 ===》ss表示在内存中的大小 100×1
strlen(ss) 结果是10 ===》strlen是个函数内部实现是用一个循环计算到/0为止之前

int ss[100] = "0123456789";
sizeof(ss) 结果 400 ===》ss表示再内存中的大小 100×4
strlen(ss) 错误 ===》strlen的参数只能是char* 且必须是以''''/0''''结尾的

char q[]="abc";
char p[]="a/n";
sizeof(q),sizeof(p),strlen(q),strlen(p);
结果是 4 3 3 2
第二个例子:class X
{
int i;
int j;
char k;
};
X x;
cout<<sizeof(X)<<endl; 结果 12 ===》内存补齐
cout<<sizeof(x)<<endl; 结果 12 同上


第三个例子:char szPath[MAX_PATH]

  
如果在函数内这样定义࿰c;那么sizeof(szPath)将会是MAX_PATH࿰c;但是将szPath作为虚参声明时(void fun(char szPath[MAX_PATH])),sizeof(szPath)却会是4(指针大小)




三、sizeof深入理解。
  • 1.sizeof操作符的结果类型是size_t࿰c;它在头文件中typedef为unsigned int类型。该类型保证能容纳实现所建立的最大对象的字节大小。
  • 2.sizeof是算符࿰c;strlen是函数。
  • 3.sizeof可以用类型做参数࿰c;strlen只能用char*做参数࿰c;且必须是以''''/0''''结尾的。sizeof还可以用函数做参数࿰c;比如:
    short f();
    printf("%d/n", sizeof(f()));
    输出的结果是sizeof(short)࿰c;即2。
  • 4.数组做sizeof的参数不退化࿰c;传递给strlen就退化为指针了。
  • 5.大部分编译程序 在编译的时候就把sizeof计算过了 是类型或是变量的长度 这就是sizeof(x)可以用来定义数组维数的原因
    char str[20]="0123456789";
    int a=strlen(str); //a=10;
    int b=sizeof(str); //而b=20;
  • 6.strlen的结果要在运行的时候才能计算出来࿰c;时用来计算字符串的长度࿰c;不是类型占内存的大小。
  • 7.sizeof后如果是类型必须加括弧࿰c;如果是变量名可以不加括弧。这是因为sizeof是个操作符不是个函数。
  • 8.当适用了于一个结构类型时或变量࿰c; sizeof 返回实际的大小࿰c; 当适用一静态地空间数组࿰c; sizeof 归还全部数组的尺 寸。 sizeof 操作符不能返回动态地被分派了的数组或外部的数组的尺寸
  • 9.数组作为参数传给函数时传的是指针而不是数组࿰c;传递的是数组的首地址࿰c;如:
    fun(char [8])
    fun(char [])
    都等价于 fun(char *) 在C++里传递数组永远都是传递指向数组首元素的指针࿰c;class="tags" href="/tags/BianYiQi.html" title=编译器>编译器不知道数组的大小 如果想在函数内知道数组的大小࿰c; 需要这样做: 进入函数后用memcpy拷贝出来࿰c;长度由另一个形参传进去
    fun(unsiged char *p1, int len)
    {
    unsigned char* buf = new unsigned char[len+1]
    memcpy(buf, p1, len);
    }
    有关内容见: C++ PRIMER?
  • 10.计算结构变量的大小就必须讨论数据对齐问题。为了CPU存取的速度最快(这同CPU取数操作有关࿰c;详细的介绍可以参考一些计算机 原理方面的书)࿰c;C++在处理数据时经常把结构变量中的成员的大小按照4或8的倍数计算࿰c;这就叫数据对齐(data class="tags" href="/tags/ALIGNMENT.html" title=alignment>alignment)。这样做可能会浪费一些内存࿰c;但理论上速度快了。当然这样的设置会在读写一些别的应用程序生成的数据文件或交换数据时带来不便。MS VC++中的对齐设定࿰c;有时候sizeof得到的与实际不等。一般在VC++中加上#pragma pack(n)的设定即可.或者如果要按字节class="tags" href="/tags/CunChu.html" title=存储>存储࿰c;而不进行数据对齐࿰c;可以在Options对话框中修改Advanced compiler页中的Data class="tags" href="/tags/ALIGNMENT.html" title=alignment>alignment为按字节对齐。
  • 11.sizeof操作符不能用于函数类型࿰c;不完全类型或位字段。不完全类型指具有未知class="tags" href="/tags/CunChu.html" title=存储>存储大小的数据类型࿰c;如未知class="tags" href="/tags/CunChu.html" title=存储>存储大小的数组类型、未知内容的结构或联合类型、void类型等。 如sizeof(max)若此时变量max定义为int max(),sizeof(char_v) 若此时char_v定义为char char_v [MAX]且MAX未知࿰c;sizeof(void)都不是正确形式

四、结束语

sizeof使用场合。

  • 1.sizeof操作符的一个主要用途是与class="tags" href="/tags/CunChu.html" title=存储>存储分配和I/O系统那样的例程进行通信。 例如:
      void *malloc(size_t size), 
      size_t fread(void * ptr,size_t size,size_t nmemb,FILE * stream)。
  • 2.用它可以看看一类型的对象在内存中所占的单元字节。
    void * memset(void * s,int c,sizeof(s))
  • 3.在动态分配一对象时,可以让系统知道要分配多少内存。
  • 4.便于一些类型的扩充,在windows中就有很多结构内型就有一个专用的字段是用来放该类型的字节大小。
  • 5.由于操作数的字节数在实现时可能出现变化࿰c;建议在涉
    • 及到操作数字节大小时用sizeof来代替常量计算。
    • 6.如果操作数是函数中的数组形参或函数类型的形参࿰c;sizeof给出其指针的大小。
    内存初始化函数memset()
    #include <memory.h>
    内存初始化函数memset()用法详解

    作用:在一段内存中填充某个给定的值࿰c;注意填充时是按照字节顺序填充的࿰c;而不是按照元素填充。

    此方法是对较大的结构体和数组进行清零操作的一种有效方法。

    函数形式:memset(void *class="tags" href="/tags/BUFFER.html" title=buffer>buffer,int c,size_t n)

    class="tags" href="/tags/BUFFER.html" title=buffer>buffer是需要设置的内存的开始地址;c是期望填充值;n是需要填充的字节数。

    例1:一个int
    a[10]型变量࿰c;则memset(a,100,sizeof(int))此操作后࿰c;元素a[0]的每个字节的值都是100࿰c;即0x64࿰c;二进制表示:
    01100100,所以元素a[0]为0x64646464࿰c;二进制表示:01100100 01100100 01100100 01100100

    void main()

    { int i,a[20];

    memset(a,10,5*sizeof(int));

    for(i=0;i<20;i++)

    cout< 此函数输出的10个元素并非10࿰c;而是每个字节都是00001010组成的int型数。

    例2:

    #include

    #include

    void main( void )

    {

    char class="tags" href="/tags/BUFFER.html" title=buffer>buffer[] = "This is a test of the memset function";

    printf( "Before: %s/n", class="tags" href="/tags/BUFFER.html" title=buffer>buffer );

    memset( class="tags" href="/tags/BUFFER.html" title=buffer>buffer, ''*'', 4 );

    printf( "After: %s/n", class="tags" href="/tags/BUFFER.html" title=buffer>buffer );

    }

    Output

    Before: This is a test of the memset function

    After: **** is a test of the memset function





    Memset用来对一段内存空间全部设置为某个字符࿰c;一般用在对定义的字符串进行初始化为'' ''或''/0'';

    例:char a[100];

    memset(a, ''/0'', sizeof(a));

    memset可以方便地清空一个结构体类型的变量或数组。

    如:

    class="tags" href="/tags/STRUCT.html" title=struct>struct sample_class="tags" href="/tags/STRUCT.html" title=struct>struct

    {

    char csName[16];

    int iSeq;

    int iType;

    };

    对于变量

    class="tags" href="/tags/STRUCT.html" title=struct>struct sample_strcut stTest;

    一般情况下࿰c;清空stTest的方法:

    stTest.csName[0]=''/0'';

    stTest.iSeq=0;

    stTest.iType=0;

    用memset就非常方便:

    memset(&stTest,0,sizeof(class="tags" href="/tags/STRUCT.html" title=struct>struct sample_class="tags" href="/tags/STRUCT.html" title=struct>struct));

    如果是数组:

    class="tags" href="/tags/STRUCT.html" title=struct>struct sample_class="tags" href="/tags/STRUCT.html" title=struct>struct TEST[10];



    memset(TEST,0,sizeof(class="tags" href="/tags/STRUCT.html" title=struct>struct sample_class="tags" href="/tags/STRUCT.html" title=struct>struct)*10);

    memcpy 用来做内存拷贝࿰c;你可以拿它拷贝任何数据类型的对象࿰c;可以指定拷贝的数据长度。

    例:char a[100],b[50]; memcpy(b, a, sizeof(b));

    注意如果用memcpy(b,a,sizeof(a))࿰c;很可能会造成b的内存地址溢出。

    Strcpy就只能拷贝字符串了࿰c;它遇到''/0''就结束拷贝。

    例:char a[100],b[50];strcpy(a,b);如用strcpy(b,a)࿰c;要注意a中的字符串长度(第一个‘/0’之前)是否超过50位࿰c;如超过࿰c;则会造成b的内存地址溢出。

    str也可以用用个参数的strncpy(a,b,n)
cle>

http://www.niftyadmin.cn/n/808316.html

相关文章

无形团队 有形管理(上) (转)

无形团队 有形管理&#xff08;上&#xff09; (转)[more] 不论你接受与否&#xff0c;我们的工作场所将变得越来越象俱乐部&#xff0c;你可以吃东西&#xff0c;会见他人&#xff0c;互致问候&#xff0c;这种新的工作环境下&#xff0c;朝九晚五式的死板沉闷将为虚拟化的…

A20 GPIO中断类型差别结果迥异的问题思考

A20GPIO中断类型差别结果迥异的问题思考 最近在使用全志A20做开发时&#xff0c;发现在处理中断的时候&#xff0c;用电平触发模式&#xff0c;报中断比较乱&#xff0c;用边沿触发则很稳定&#xff0c;不会乱报。笔者感到比较困惑&#xff0c;笔者用电平触发写的code如下&…

JavaScript类和继承:this属性

this属性表示当前对象&#xff0c;如果在全局作用范围内使用this&#xff0c;则指代当前页面对象window&#xff1b; 如果在函数中使用this&#xff0c;则this指代什么是根据运行时此函数在什么对象上被调用。 我们还可以使用apply和call两个全局方法来改变函数中this的具体指向…

解析android framework下利用app_process来调用java写的命令及示例

解析android framework下利用app_process来调用java写的命令及示例 在android SDK的framework/base/cmds目录下了&#xff0c;有不少目录&#xff0c;这些目的最终都是build出一个bin文件&#xff0c;再存放到/system/bin目录下&#xff0c;对于C/CPP写的命令&#xff0c;我们还…

POJ 2724

题意&#xff1a;m个长度为n的2进制数&#xff0c;可能某一位是*代替&#xff08;代表*1和*0都被包含了&#xff09;。要求用最少的另外一些二进制数&#xff08;也可以某一位被*代替&#xff09;将原来的那些覆盖&#xff08;且只能覆盖一次&#xff09;&#xff0c;且要求不能…

《程序员》试刊二卷首语 (转)

《程序员》试刊二卷首语 (转)[more]卷首语 遇到一位海外回国的朋友&#xff0c;一见面就对我抱怨&#xff0c;说中国的技术实在是太差了。我问他到底差在什么地方&#xff0c;他沉思良久说&#xff1a;“没有不差的地方&#xff0c;中国互联网的命脉全在别人手里。”我忽然感到…

《程序员》杂志试刊一发刊词 (转)

《程序员》杂志试刊一发刊词 (转)[more]发刊词 60年的计算机发展史&#xff0c;就是一部程序员历史。 “软件推动计算机&#xff0c;计算机推动历史”&#xff0c;这样的说法并不过分。中国的PC时代&#xff0c;也完全是一个程序员时代&#xff0c;严援朝、吴晓军、求伯君、王…

linux下挂载硬盘

linux下挂载硬盘 用dmesg找出新硬盘的设备名,像/dev/sda等,然后用fdisk分区,创建挂载点,用mkfs创建文件系统,最后挂载 ....下面是我以前写的,呵呵,希望有帮助1. 将sici硬盘放入服务器&#xff08;因为是热插拔&#xff0c;因此不用重启服务器&#xff09;2. 假…